
NASA-CR-192293

m

Formalizing Structured File Services
..........for the Data Storage and Retrieval
Subsystem of the Data Management

.....System for Soacestation Freedom

Darnir A. Jamsek /_/_ _ _

Odyssey Research Associates Corporation

I--4

e',,I
I

o,
Z

. -- = °

h-
O_

tO 0

U ,4"
C
:_ 0

o3

t_
0

A _D u._ uJ _ C

I _-u a_ :E 0 CL O_

I t,.- C_ tJ'_ 3E" ,_j

Z _.'- <¢ _ >-,- 0 _._,._,.._(.,.")C'_(,_r_u..t.,jm.. J

=

° February 8. 1993 ,=

Cooperative Agreement NCC 9-16
Research Act_ivity No. IR.04

_ NASA Johnson Space Center
_= Information Systems Directorate

- - Research Institute for Computing and Information Systems

University of Houston-Clear Lake

[

FINAL REPORT

II

==

W

w

W

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computlng and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson S-pace Center (jSC] and local In-d_J_try to actively support research
in the computing and information sciences. As part of thls endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's 7_
main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educatt0na_]'acili_-es are shared by the two institutions to
conduct the research.

The UHCL/RICIS mlsslon Is to Conduct, coordinate, and disseminate research --_

and professional level education In computing and information systems to _

serve the needs of the govemment, industry, community and aeademla.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to Its sponsors _researchers. Within UHCL, the mission is being

Implemented through interdisciplinary involvement of faculty and students i]_

from each of the four schools: Business and Public Administration, Educa-

Uon, Human Sciences and H1unanlties, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program _-_

Is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RIC1S research and education programs, while other research

organizations are involved via the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and re.search obJccUves to advance knowledge in the computing and informa -
tion SCiences. RICIS, workingjolntly with its sponsors, advises on research

needs, recommends principals for conducting the research, pro_des tech-

nical and administrative support to coordinate the research and integrates

technical results into the goals ofUHCL, NASA/JSC and industry.

J

w

w

_ I
real

D

_Z

Formalizing Structured File Services
for the Data Storage and Retrieval

Subsystem of the Data Management
System for Spacestation Freedom

m

L

w

w

_ =

w

w

ii

ql

!
m
!

m

m

I

im

g

i

m
i
Ip

_mw

g

LJ
m

g

[]
!

I
g

!

R

mR

|

g

U

J

w

m

v

= .

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing
and Information Systems by Damir A. Jamsek of Odyssey Research Associates
Corporation. Dr. Charles Hardwick served as RICIS research coordinator.

Funding was provided by the Information Systems Directorate, NASA/JSC through
Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity
was Robert B. MacDonald, Manager, Research, Education, and University

Programs, Technology Development Division, Information Systems Directorate,
NASA/JSC.

The views and conclusions contained in this report are those of the author and should

not be interpreted as representative of the official policies, either express or implied,
of UHCL, RICIS, NASA or the United States Government.

==

r _

J

|
i

R

II

ID

g

!
m

i

m

U

I
!

Q

w

i

J

i
i

i
R
m

g

I

s!w

m

m
i

z

g

w

V

w

v

Formalizing Structured File Services for

the Data Storage and Retrieval Subsystem

of the Data Management System for

Spacestation Freedom

Damir A. Jamsek

Odyssey Research Associates Corporation

301 Dates Drive

Ithaca, NY 14850

February 8, 1993

1 Introduction

This report presents a brief example of the use of formal methods techniques

in the specification of a software system. The report, is part of a larger effort

targetted at defining a formal methods pilot project for NASA. This report's

purpose is to present one possible application domain that may be used to

demonstrate the effective use of formal methods techniques within the NASA

environment. It is not intend,;d to provide a tutorial on either formal methods

techniques or the application being addressed. It should, however, provide

an indication that the application being considered is suitable for a formal

methods by showing how such a task may be started.

The particular system being addressed is the Structured File Services

(SFS), which is a part of the Dala Storage and Retrieval Subsystem (DSAR),

which in turn is part of the Data Management System (DMS) onboard

Spacestation Freedom [1]. This is a software system that is currently un-

der development for NASA.

w

ID

An informal mathematical development is presented in the section 2. Sec-

tion 3 contains the same development using Penelope [23], an Ada specifi-

cation and verification system. The complete text of the English version

Software Requirements Specification (SRS) is reproduced in Appendix A.

2 An Informal Mathematical Model

In beginning the task of formally describing a computer system, a specifier

of the system will initially develop an informal mathematical model. In de-

veloping the informal model the specifier will naturally use common intuitive

notions from mathematics. Set theory and function theory will be used to

describe the behavior of the SFS. Describing the system in terms of its state

and how the system may transition from one state to another is also a com-

mon technique that we will use. While the use of these techniques will be

informal and ad hoc, the next section will use a formal notation for describing

the SFS that reflects the developments in this section.

We begin by examining the processing requirements placed on the SFS.

These are captured in a series of shalls wri{ten in plain english text.

Shall 1 SFS shall (1) create a structured file upon request from the software

user.

The first shall introduces several terms. To model these terms, we intro-

duce several definitions.

* The set USER is the set of SFS users.

• The set SFS_FILE is tile set of all SFS files.

• The set FILE_NAME is the set of SFS file names.

Now a function, create_file, can be defined. This function, when supplied

a user and a filename, returns a valid SFS file. The domain and range of the

function are defined as

• creote_file: USER x FILE_NAME ---, SFS_FILE.

N

=
m

II

g

flW

ID

w

Q

u

R

i

g

J

!
!

m

I

11

i

B

!
m

U

==
I

II

m
!

M

v

W

m

w

w

w

As additional elements of the SFS model are defined, the behavior of the

function create_file may then be defined.

The SFS files are part of the state of the SFS system. As the system

executes and user requests are serviced, this state will change. To describe

these changes in state, various components, as well as the overall state, are

given names. We call the entire state, sfs_state. The SFS files are called

sfs_files and are a component of aft_state. Also the SFS file names are

sfs_file_names and are also a component of the state.

The operation of creating a file upon user request will certainly change

the state of the SFS. Before defining this change in state, it is worthwhile to

note that the SFS, later in the SRS, specifies other user services that may be

requested. These correspond to the input DDFS_SFS specified in the SRS as

input to the SFS. Let DDFS_SFS - {create, open, read, write, delete, dir}

be this set of requests. The set DDFS_SFS captures the fact that these

various requests exist, but does not indicate how these requests may effect

the system.

Now, for some DDFS to SFS request, create C DDFS_SFS, we can

specify some change in the sfs_state. That is, for some, user E USER, and

file_name E FILE_NAME,

• a new file E SFS_FILE should be created,

• the state component s.fs_.files should be updated, and

• the state component sfs_.files_names should be updated.

Additional, elements of the model must be defined in order to complete

the definition of the response to a create E DDFS_SFS request. We con-

tinue by examining shall number 2 in tile SRS.

Shall 2 SFS shall (2) establish a dictionarg describing the structured file so

that it can manage the updating of the file.

It seems clear that an SFS dictionary of some sort should be included as

part of the state, call it sfs_dict. This dictionary will provide information

about SFS files, so we index it by SFS file names. When looking up the entry

for a particular file, by name, we would expect in return an entry for that

file which describes various aspects of the tile. A function

i

• lookup : SFS_DICT x FILE_NAME _ DICT_ENTRY

serves this purpose.

When files change, it may be necessary to modify their dictionary entries.

A function update is used to update dictionary entries. Given a dictionary

and a new entry for a particular file, a new dictionary, appropriately updated

will be returned. The domain and range for this function is given as

update : SFS_DICT x FILE_NAME x DICT_ENTRY --* SFS_DICT

The relationship between lookup and update is that lookup will always

return the appropriate entry in an updated dictionary. This realtionship is

formally defined in the next section.

Continuing with the shalts from the SRS.

Shall 3 The dictionary shall (3) contain the number of records in the file, the

record size, the record structure, the archive threshhold (prescribed percent-

age capacity threshhold for archiving the file), an archive/circular indicator

(indicating whether the file should be archived or overwritten), and access in-

formation (user identification, password, read onlt access, write access, delete

:access, archive rights, etc.).

This shall defines various elements of a dictionary entry. The following

functions on a dictionary entry are introduced.

• nrec : DICT_ENTRY _ Af

• recsize : DICT_ENTRY --* Af

• recstruct : DICT_ENTRY _ 3/

• archive: DICT_NTRY _/3

• access : DICT_ENTRY ---, ACCESS_INFO

where N'-- {0,1,2,...} and/3 -- {true, false}

An element of the set ACCESS_INFO is a set of access rights granted

to users f0raparticu!ar file. These access rights are defined by the set,

ACCESS_RIGHTS -{read, write,delele, execute}.So,we may define

, q,AC CES_ _[NFO as the set of all subsets of ACCES'S_RIGHTS, or equiv-

alently, ACCESS_INFO =-P(ACCE,_.'S_R[(i'IITS).

n

U

!

Q

n

w

14

g

U

q

!
m

I

m

|

g

m
!

D

!
n

U

!

m

I

2

L

w

m
w

v

=

m

W

To this point, not much more than the naming of various components of

the model has taken place. In addition to naming components, we have also

indicated some structure and nature of each of the components. As develop-

ment of the model proceeds this structure would be more fully defined and

eventually yield a complete mathematical model of the intended structure of

the entire system. The structure would then be suitable for various analysis,

refinement and documentation purposes. This short example only serves to

give a flavor for a style of development possible.

Given the start of an informal mathematical model, a system designer

may decide to record his design formally. The next section addresses the

same issues as this section, only in the framework of a formal mathematical

notation.

3 Developing a Formal Mathematical Model

The previous section developed a model of the SFS using a relatively informal

style of mathematical presentation based on commonly understood mathe-

matical notions of set and function theory. This section addresses essentially

the same portions of the specification but uses a formal mathematical nota-

tion. The notation used is taken from the Penelope Ada specification and

verification system developed at Odyssey Research Associates [23]. It is a

system based on the Larch styh: of specification and is similar in its mathe-

matical style to systems such as EHDM, LSL, PVS. That is, its specifications

are algebraic in nature. Penelope has the additional ability to directly address

issues of Ada code specification and verification. The details of Penelope are

not presented here and the specification is presented simply as a demonstra-

tion of the feasibility of applying mechanical means to the specification and

verification of systems such as the DSAR SFS.

In the following treatment a basic style of algebraic specification is used

to capture the meaning of statements in the SRS. English text provides an

informal description of each component of the specification. In the following

treatment the Larch construct called a trait is used to encapsulate a particular

theory. That is, a set of related facts which form a logical structure and from

which further facts may be deduced. The algebraic form of specification in

Larch uses sorts and operators to define logical theories. Sorts and collections

of objects. Operators define functions from sorts into sorts.

m
i
mm

In the previous section, sets were used to describe various aspects of the

model. The notion of a set needs to be formally defined by introducing

operators and sorts which capture the usual behavior of sets. In this case,

empty, and member are alternate notations for the usual notions {} and 6,

respectively.

--I trait Set is

--I introduces

--I empty: -> Set;

--I insert: Element, Set -> Set;

--I member: Element, Set -> Bool;

< .. additional set operations omitted ...>

-- asserts

-- Set generated by empty, insert

-- Set partitioned by member

-- axioms: forall [e:Element, el:Element, s:Set]

-- not_member_empty: (not member(e, empty()));

-- member_insert: (member(e, insert(el, s))=

((e=el) or

member(e, s)));

< ... axiomatization of additional set operations omitted ...>

--I end axioms;

Additional set manipulations constructs such as set union and intersec-

tion may be similarly defined. Basic mathematical notions such as sets,

sequences, lists, and stacks, would normally be provided in a collection of

theories gathered in a library and available for use by the specifier. This

theory of sets is developed in a generalized form and later used (and reused)

in several sp_ecia!ized forms.

The following trait defines a general theory of dictionaries that will be

used subsequently. A dictionary is some object to which the operations

update and lookup may be applied and in which update and lookup have the

appropriate relation to each other. In addition, the operation defined may

be used to check the definedness of a particular index.

--I trait Dictionary is

--i introduces

D

g

=
I

i

I

g

i
m

im

im

i

i

Q

Be
im

|
I
i
m

m

R

N

i

I

i
i
i

m

|
i

i
gm

.=::_

v

w

W

--I

empty: -> Dict;

update: Index, Ent, Dict -> Dict;

lookup: Index, Dict -> Ent;

defined: Index, Dict -> Bool;

asserts

Dict generated by empty, update

Dict partitioned by lookup

axioms: forall [il, i2:Index, el, e2:Ent, dl,

not_defined: (not defined(il, empty()));

defined: (defined(J2, update(il, el, dl)) =

((il=i2) or

defined(J2, dlJ));

lookup: (lookup(J2, update(il, el, dl))

d2 :D ict]

(if (il=i2) then el else lookup(i2, dl)));

--l end axioms;

--l lemmas: forall

--l lookup_same:

--i proof:

--, BY synthesis

--i BY synthesis

--' BY synthesis

--' BY lookup in

--i substituting

--' BY synthesis

--I end lemmas;

[il, i2:Index, el, e2:Ent, dl, d2:Dict]

(lookup(il, update(il, el, dl))=el);

of FORALL

of FORALL

of FORALL

trait Dictionary

for left

of TRUE

While this theory is developed in general in terms of Index, Entry, Dict,

etc. The use of the theory will be in terms of file names and SFS files, as in

Section 2. In fact, it may eventually be reused in various specialized forms.

The trait Dictionar 9 not. only introduces some new concepts related to

dictionaries but also contains the proof of a property lookup_same which

says that after updating a dictionary entry, looking it up will return the

correct entry. Proofs of properties that follow from basic definitions can be

considered a form of design verification.

The SRS specifies various ilems as input to the SFS. One of these is a

DDFS to SFS message or data item. The DDVS_SFS trait defines the possi-

7

m

im

ble DDFS to SFS operations, create, open, read, write, dir. The behavior of

these operations is not yet defined.

--[trait DDFS_SFS is

-- I introduces

--I sort DDFS_SFS is enumeration (create, open, read, write, dir)

The enumeration construct defines a particular sort and its individual

elements much as in section 2 we used the set notation, DDFS_SFS =

{create, open, read, write, delete, dir} to define DDFS_SFS.

In response to the DDFS to SFS operation a message from the SFS to the

DDFS is required. The trait SFS_DDFS specifies some messages from the

SFS to the DDFS in response to the DDFS to SFS operations. Again, the

enumeration construct is used to define the elements of the sort SFS_DDFS.

--I trait SFS_DDFS is

--I introduces

--I sort SFS_DDFS is enumeration (create_ok, create_error, ...)

<... more SFS_DDFS message specifications elided ...>

Accessrightsto files are granted to users ofthe SFS. These accessrights,

read, write, and delete, are defined in the nexttrait.

--I trait AccessRights is

-- I introduces

--I sort AccessRight is enumeration (read, write, delete)

Various information, beyond simply access rights, must be maintained for

files in the system. The trait AccessInfo defines what this information is and

how it can be manipulated. The trait AccessInfo makes use of previously

defined traits for Sets and AccessRights.

--I trait AccessInfo is

--I includes (AccessRights)

--I includes (Set)(AccessRight for Element,

UserAccessRights for Set)

--I includes (Set)(UserAccessInfo for Element,

AccessInfo for Set)

--I introduces

--[sort UserAccessInfo is tuple (User, Password, UserAccessRights)

Q

U

U

n

i

m

m

m

HI

mm

m
W

mm

I
U

|

|

mm

R

m

mm

U

U

g

v

--4
W

L_

v

z_

The trait AccessInfo shows how previously defined concepts can now be

effectively used to build up more complex theories. In this case, the trait

AccessRights is included in its original form. Because we would also like

to manipulate sets of AccessRights, we include the trait Set, renaming the

general sort Element with the specific sort AccessRights. Similarly, for User-

Accesslnfo, the trait Set is included. The tuple construct defines the sort

UserAccessInfo to be a triple, the first element taken from the sort User, the

second from the sort Password, and the last from the sort UserAccessRights.

The SFS Dictionary is a specialization of the general theory of dictionaries

defined in the trait Dictionary. It is specialized to the case where entries

are file information and the indexes are file names. Additionally, other file

information operators are defined which describe the types of file information

being retained in the dictionary.

--I

--[

--w

_m

trait SFS_DICTIONARY is

includes (Dictionary)(Filename for Index,

FileInfo for Ent,

SFS_Dict for Dict)

includes (AccessInfo)

introduces

rec_count: FileInfo -> Int;

rec_size: FileInfo -> Int;

rec_structure: FileInfo -> RecStruc;

arch_thresh: FileInfo -> Int;

arch_circ: FileInfo -> Bool;

access_info: FileInfo -> AccessInfo;

The SFS state information can now be defined by a trait, SFS_ST.4TE.

The components of the SFS_State defined in this trait are SFS_Dict and

SFS_Files. There is a distinguished state called sfs_initial_state about

which the axiom sfs_initial_atate_dict states that "the initial state contains

an empty dictionary". In such a way, information about the desired initial

state of the system and any other states in the system may be recorded. For

example, the intent of the predicate sfa_valid_.,tate is to specify which states

in tile system are valid.

--I trait SFS_STATE is

i

g

-- includes (SFS_DICTIONARY)

-- introduces

-- sort SFS_State is tuple (SFS_Dict, SFS_Files);

-- sfs_initial_state: -> SFS_State;

-- sfs_valid_state: SFS_State -> Bool;

-- axioms:

-- sfs_initial_state_dict: (sfs_dict(sfs_initial_state()) =

empty());

<... definition of sfs_valid_state omitted ...>

--I end axioms;

The SFS state information and the messages to and from SFS and DFSS

can now be incorporated into the trait SFS which will define the processing

requirements for SFS. The function sfs_operation when axiomatized will

define how a particular user can operate on a particular file with a particular

operation in a given state of the system. The result is the new state of

the system. The function sfs_result defines the resultant message when the

operation is attempted.

--I trait SFS is

--I

--I

--I

--I

--I

<... axioms for operations omitted

includes (SFS_STATE)

includes (SFS_DDFS)

includes (DDFS_SFS)(0peration for DDFS_SFS)

introduces

sfs_operation: User, Filename, Operation,

SFS_State -> SFS_State;

sfs_result: User, Filenmme, 0peration,

SFS_State -> SFS_DDFS;

. o o>

Using the mathematical model developed so far, which culminated in the

trait SFS, a specification of an Ada package can be written. This specification

begins to define the actual Ada constructs, types, objects and functions which

will eventually realize the SFS.

--I with trait SFS ;

package SFS is

I0

m

m

!

i

m

mm
!

_m
m

l

[]
I

m

|
W
|

n

|

i
mm

U

_w
U

i
J

H

=

m
V

V

w
m

--I based on SFS_State

type sfs_filename is private ;

--I based on Filename;

type sfs_username is private ;

--I based on User;

type sfs_ddfs_message is private ;

--l based on SFS_DDFS;

function sfs_create_file(user : in sfs_usern_me;

file : in sfs_filename)

return sfs_ddfs_message;

-- where

-- Global SFS : IN 0UT;

-- in sfs_valid_state(SFS) ;

-- out sfs_valid_state(SFS);

-- out (SFS = sfs_operation(user,

-- return sfs_result(user, file,

-- end where;

file, create() ,in SFS));

create() ,in SFS) ;

<... remaining SFS functions, procedures, objects are omitted ...>

end SFS ;

The Ada package SFS has associated with it a state, SFS, which given

the annotation above, is based on the sort SF,S'_State in the sort SFS. The

behavior of function and procedure in the package SFS will be partially

defined in terms of their effect on this state.

The types introduced are private to the package being defined. That

is, their actual implementation is not important to the user of the package.

However, we note that they are based on elements of the mathematical de-

scription of the SFS in sort SFS. From this, it is possible to deduce aspects

of their behavior.

The single function sfs_cre:ate_file is also specified in terms of the math-

ematical objects in the specification. Paraphrased, the specification reads

something like: "The function _fs_create_Jile modifies the state of package

SFS. On entry to the function tile state of SFS must be valid and o11 exit the

new state of SFS must be valid. The new value of the state is defined by the

s.fs_operation function when the desired operation is create and the _tser is

returned the value of the s f.__rcault function."

1I

B

i

Q

This package specification may now serve two purposes.

. It provides a clear description of the desired program in a manner

which is independent of the actual code design of the software. That

is, it is based solely on themathematical description of the design. A

designer and developer of the actual code may refer to the mathematical

description of the objects being coded whenever a question arises as to

the specification's intent.

. Developed code may be verified against the mathematical description

of the code to provide a greater assurance in the correctness of the

developed code.

4 Conclusions and Recommendations

This example is meant to show a possible style of specification which may

be applied to the SFS software component. The formal specification would

provide clear, unambiguous specifications which would be suitable for various

kinds of analysis, both mechanical and human.

The presentation was necessarily short and incomplete. Its intention was

to provide an insight into the appropriateness of formal methods techniques,

as well as tile suitability of tile DMS DSAR function as a target application.

A formalization of the DSAR requirements appears to be feasible and

would result in a clear specification of its functionality. The application of

formal methods techniques to this software system does not seem to be a

high risk endeavor. Therefore it would seem a likely choice for a pilot project

in formal methods at NASA.

The main areas that the formalization would address include:

• Input, output, and state data format specifications,

• Functional description of user interfaces to the DSAR,

• Interaction of functional components of the DSAR.

The most difficult issues to be addressed in a formalization Of the require-

ments should not, be overlooked.

t2

n

n

n

m

m

i
i

I

!
I

J

m

m
m

!

[]

i

|

i
B

!

m

|

u

L _

There are concurrency and multiprocessing requirements placed on the

software. An appropriate technique for mathematically describing con-

currency must be selected or developed.

The interface to operating system services must be formalized. This

would entail formalizing at least a portion of the Ada/OS runtime

environment.

Finally, it should be made clear what the intention of the formalization

effort is:

To provide a clear, concise specification of the system that can be used

by system designers in further developing the system, and to serve as a

reference point when ambiguities or conflicts arise in the system design

and implementation.

To provide a formal model of the system from which properties of the

system may be formally verified. In this case, what those properties

are still needs to be determined.

To provide a basis for the formal design and verification of the actual

implementation of the system. This would entail code verification in

an effort to increase assurance in the final software product.

For each of these goals, a formal treatment of the software requirements

for DSAR will yield a software system with a higher degree of assurance in
its correctness.

m

r

_=L..2.w

=

= .
w

u

13

J

i

m

A Software Requirements Specification

The following software requirements specification is taken from the Data

Management System (DMS) Data Storage and Retrieval (DSAR) Software

Requirements Specification (SRS). It the the section that addresses processing

requirements for the Structured File Services (SFS) component of the DSAR.

It is presented here unedited and in its entirety.

A.1 4.1.2.1.1 INPUTS

Name Descript ion Source

DDFS-SFS The distributed structured file DDFS

request from a DMS service user

or a directory list request

DFTSS-SFS Response from an archive request DFTSS

ST.FILE-SFS Input Structured File ST.FILE

A.2 4.1.2.1.2 PROCESSING

SFS shall (1) create a structured file upon request from the software user.

SFS shall (2) establish a dictionary describing the structured file so that

it can manage the updating of the file. The dictionary shall (3) contain the

number of records in the file, the record size, the record Structure, the archive

threshhold (prescribed percentage capacity threshhold for archiving the file),

an archive/circular indicator (indicating whether the file should be archived

or overwritten), and access information (user identification, password, read

onlt access, write access, delete access, archive rights, etc.). SFS shall (4)

inform the requestor that the file has been created.

The SFS shall (5) accept write requests for the structured file. If the file

size has exceeded the threshhold, SFS shall (6) automatically request, that

the file be transferred to the archive via the DMS File Transfer Service or

begin overwriting the file file depending on the archive/circular indicator.

If a file is to be archived, the SFS shall (7) ensure that no structured file

processing interferes with archiving the file.Then, SFS shall (8) write tile

data to a 2KB buffer in main memory. When the buffer is full, SFS shall (9)

!

i
g

i

m

Q

ID

m

w

|

I

I
g

|
!
I

g

R
!

I

|

m
J

!
mD

I

W

!

I

g

w

w

w

qW

i_

=

= =

L

write the contents to the mass storage device (MSD). SFS shall (10) notify

the requestor of the actions taken.

SFS shall (11) accept requests to open, close, read, or delete a structured

file, or provide a directory list. A directory list is a file containing the list

of files and the attributes of files contained in a designated directory. SFS

shall (12) provide access to structured files via a key to be: record number,

time, date, date and time, or a range of dates and/or times. SFS shall (14)

permit access to individual field(s) within a record. SFS shall (15) provide

for on-demand read requests. SFS shall (16) provide a locking mechanism to

protect the integrity of the data. If a read or write request for a locked file

is received, SFS shall (17) not honor the request and shall (18) inform the

requestor that the file is locked.

SFS shall allow multiple concurrent access to centralized structured files.

SFS shall (20) provide for distributed access to structured file services from

SDPs and MPACs on core and payload networks. The inl,'rface to SFS shall

(21) be such that the requestor need not know where the structured files are

located or the detail of the detail of the mechanisms used to perform the

structured file services.

For all of the requests described above, SFS shall (22) determine if the

requestor has authorization to access the structured file in the manner re-

quested. If access is not authorized, the SFS shall (2.3) deny access and

inform the requestor of that fact. SFS shall (24) maintain a log of denied

acesses and report denied access to predesignated MPAC.

SFS shall (25) accept requests for structured file services from the dis-

tributed interface for DMS service users. When the service is complete SFS

shall (26) transmit the requested information or status to the requestor. If

the service cannot be performed, SFS shall (27) transmit the reasons to the

requestor.

SFS shall (28) honor requests for structured file services based on input

priority level of the requests. SFS shall (29) provide for concurrent use of
the files.

SFS shall (30) maintain a Structured File Dictionary containing a record

of all structured files using information provided when a structured file is

created.

SFS shall (31) use the file services of the OS/Ada RTE CSCI fur inter-

facing to the MS1). SFS shall (32) SFS shall provide for a number of retries

for reads and writes when I/O errors are encountered. The number of retries

15

i

will be provided in the detailed design.

SFS shall (33) transmit to SM a service usage notification for logging

of SFS activities. SFS shall (24) maintain a tog of all errors resulting er-

rors resulting from structured file requests in an SFS Error Log. SFS shMl

(35) make the information in the error log available to SM on demand or

periodically.

A.3 4.1.2.1.2 OUTPUTS

Name

SFS-DDFS

Description Destination

The response from a structured DDFS

file request or a file containing

a directory list request

SFS-DFTSS Request to transfer a structured

file to the archive

DFTSS

SFS-ST.FILE Structured File Output ST.FILE

SFS-NHSDM Health and Status, activity data,

error log.

SM NHSDM

i

g

I

D

i

U

D

m

B

i

R

I

_m
g

i
i

in
g

D
I

g

I

!
ii
i

16

!

U

m
i

!
i

m

I
li

l
i
n

i

m

= 7

w

L

References

[1] Data Management System(DSAR) Data Storage and Retrieval (DSAR)

Software Requirements Specification (SRS) SY33.1I MDC H4353 IBM

Specification No. 150a442 January 2, 1990

[2] ANSI. The Programming Language Ada Reference Manzml, 1983.

ANSI/MIL-STD-1815A.

[3] E.R. Anderson, B. Di Vito, and R.M. Hart. ASOS: Information Security

for Real-Time Systems. In AFCEA West Intelligence Symposium, 1987.

[4] E. Astesiano et al. Draft formal definition of Ada. Technical report,

CRAI, DDC, 1987. Deliverable 7 of the CED MAP project.

[5] H. Barringer, J. H. Cheng, and C. B Jones. A logic covering undefined-

ness in program proofs. Acta Informatica, 21, 1984.

[6] Boehm, H.-J. Side-effects and aliasing can have simple axiomatic de-

scriptions. ACM Transactions on Programming Languages and Systems

7, 4 (October 1985).

[7] Robert S. Boyer and J Strother Moore. A Computational Logic Hand-

book. Academic Press, 1988.

[8] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, En-

glewood Cliffs, 1976.

[9] R. Floyd. Assigning meaning to programs. In Mathematical Aspects of

Computer Science XIX, pages 19-32. American Mathematical Society,
1967.

[10] R. Gerth. A sound and complete Hoare axiomatization of the Ada ren-

dezvous. In Proc. 9th ICALP, Lecture Notes in Computer Science 140,

Springer Verlag, New York, 1982, pp. 252-264.

[11] Joseph A. Goguen and R. M. Burstall. Introducing Institutions, volume

164 of Lecture Notes in Computer Science. Springer Verlag, 1984.

[12] Donald Good. Revised report on gyps2,; 2. l (draft). Technical report,

University of Texas, July 1984.

17

w

u

[13]

[14]

[15]

[16]

[17]

Its]

[19]

[2o]

[21]

[22]

[23]

[24]

David Gries. The Science of Programming. Springer-Verlag, 1981:

David Guaspari. Formal semantics of two-tiered specifications. Technical

Report 89-35, Odyssey Research Associates, September 1989. original
number 17-14.

J. V. Guttag, J. J. Horning, and J. M. Wing. Larch in five easy pieces.

Technical Report TR 5, DEC/SRC, July 1985.

C. A. R. Hoare. An axiomatic basis for computer programming. Com-

munications of the ACtl[, 12(10):576-580,583, October 1969.

C. A. R. Hoare. Proof of correctness of data representations. Acta

Informatica, 1(1):271-281, 1972.

S. Katz, Z. Manna. A ([',loser Look at Termination. Acta Informatica 5,

pp 333-352 (1975)

Carl Landwehr. The rs-232 software repeater problem. Cipher: Ne u,slet-

ter of the [EEE technical committee on security and privacy.

D. C. Luckham et al. Stanford Pascal Verifier user manual. Technical

Report STAN-CS-79-731, Stanford University, March 1979.

Luckham, D.C., and Polak, W. Ada exceplion handling: An axiomatic

approach. ACM Transactions on Programming Languages and Systems

2, 2 (April 1980), pp. 225-233.

D. C. Luckham et al. Anna: A language for annotating Ada programs.

Technical Report CSL-84-261, Stanford University, 1986. Reference
Manual.

C. Marceau and C.D. Harper. An interactive approach to Ada verifica-

tion. Proceedings of the 12th NBS/NCSC National Computer Security

Conference, MBS/NCSC, October 1989.

D. R. Musser. Abstract data type specifications in the AFFIRM system.

In Proceedings of the Specifications of R¢liable Software, pages 47-57,

April 1979.

i

g

i
m

i

m
g

m

g

g

m

l

m

B

!
I

g

U

U

m
m

g
m

Q

m

m

18

B

n

J

m

U

!w_

J

W

W

w

z
w

w

w

[25]

[26]

[27]

[28]

[29]

[3o]

[.31]

[32]

[:33]

[34]

Greg Nelson and D. C. Oppen. Simplification by cooperating decision

procedures. ACM Transactions on Programming Languages and Sys-

tems, 1(2):245-257, October 1979.

Wolfgang Polak. Program verification based on denotational seman-

tics. In Conference Record of the Eighth Annual ACM Symposium on

Principles of Programming Languages, 1981.

Wolfgang Polak. Predicate transformer semantics for Ada. Technical

Report 89-39, Odyssey Research Associates, September 1989. original

number was 17-12.

Wolfgang Polak. A technique for defining predicate transformers. Tech-

nical Report 89-53, Odyssey Research Associates, 1989. original number

was 17-4.

T. Redmond. Simplifier description. Technical Report ATR-86A (8554)-

2, Aerospace, November 1987.

Thomas Reps and Bowen Alpern. Interactive proof checking. In Con-

ference Record of the Eleventh Annual ACM Symposium on Principles

of Programming Languages, pages 36-45, January 1984. Salt Lake City,
UT.

Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator:

A System For Constructin 9 Language-Based Editors. Springer-Verlag,

1988.

Oliver Schoett. Data abstraction and the correctness of modular pro-

gramming. PhD thesis, Edinburgh, 1987. CST-42-87.

Edmond Schonberg and Brian Siritzky. Adasem, Static semantics for

Ada. Technical report, Dept. of Computer Science, Courant Institute of

Mathematical Science, 1984.

Schwartz, R.L. An Axiomatic Treatment of Algol68 Routines, In

Proc. Sixth Int'l Con£ on Automata, Languages and Programming (July

1979), Springer Verlag, New York, 1979.

t _s

= =

19

w

g

,i

1

[35] Jeannette M. Wing. Writing Larch interface language specifications.

A CM Transactions on Programmin 9 Languages and Systems, 9(1)" 1-24,

January 1987.

[36] Yemini, S., and Berry, D.M. An axiomatic treatment of exception han-

dling in an expression-oriented language. ACM Transactions on Pro-

gramming Languages and Systems 9, 3 (July 1987).

i

i

i

m

I

m

I

I

1

Ii

m

m
I

1
!

1

!
m
1

m
!

|

I

i

I

I

m
m

I

20

i

I

i
I

i

